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Definitions

Cyber Physical Systems (CPS) tightly couple hardware and software with 
sensing and manipulation of the physical environment


• Automotive, industrial, robotics, medical


A capability is a token that confers the right to access an object


• CHERI capabilities


• Macaroon network tokens



Outline
• CPS security challenges


• Capability-based access control design pattern


• CHERI capabilities for local access control


• Macaroon tokens for network access control


• Concrete implementations and initial performance assessments



Domains: 

• Industrial control


• Automotive


• Robotics


• Medical


Unique considerations: 

• Decades-long lifetimes


• Remote deployments


• Piecemeal replacement


• Safety-critical functions


• Expensive certification

CPS security challenges



CPS security challenges
Challenges 

• Legacy protocols


• Remote monitoring and maintenance


• Limited compute and memory resources


• Heterogeneous device networks


• Flat memory spaces


Current solutions 

• Boundary protection


• Intrusion/anomaly detection



Capability-based distributed system

Proposal:  Capabilities provide an intuitive and efficient mechanism for controlling 
access to physical ‘objects’ both on-device and between devices.

We introduce: 

• Hardware-backed capabilities as tokens 
to protect access to physical resources


• A model for implementing hardware-
backed tokens in distributed systems


• Efficient translation between hardware and 
network tokens


Benefits: 

• Decouple authentication and authorization 
to offload non-real time tasks


• Integrity protection for insecure, legacy 
protocols


• Natural support for static, device-to-
device communication graphs



Architectural capabilities (local) 

• Hardware defined


• Operations on memory


Object capabilities (local) 

• Software defined


• Operations on objects


Network capabilities (distributed) 

• Software defined


• Operations on objects


• Network instantiation of a local, object capability

Capability primer:  Capability types
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CHERI architecture:  Pointers become capabilities

CHERI: Capability Hardware Enhanced RISC Instructions (Watson et al. CHERI ISAv7, 2018)


• Architecturally-defined “fat pointer” with OOB validity bit used to access a memory “object”


• Carries a base, length, offset, and permissions to limit memory access range and type


• CPU instructions govern legal operations on capabilities (e.g., maintain provenance, integrity, and monotonicity)


• CPU enforces bounds and permissions on dereference operations


• omposes with “host” ISA:  MIPS, RISC-V, Arm Morello
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CHERI architecture:  Pointers become capabilities

Globals

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

CHERI protects against: 

• Creating valid pointers from integer data


• Accessing globals from the heap


• Dereferencing memory from a parent capability


• Executing a capability for a data object


Other benefits for CPS: 

• Software-defined isolation without MMUs


• Temporal memory safety


• High compatibility with existing code
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CHERI-based object capabilities
Token conferring access to software-defined ‘objects’ 

• E.g., sensors, actuators


This is the layer of on-device interaction 

• ‘Owner’ process distributes tokens to potential ‘users’


• ‘User’ processes return token with request to ‘owner’


• ‘Owner’ verifies the object and maps it to constituent architectural capabilities


CHERI capabilities are used abstractly 

• Memory addresses used to encode information, but not store data


• E.g., base:0x00 and length:0x0a encode speed settings of a motor between 0 and 10



CHERI-based object capabilities
modbus coil

states: ON 
OFF

operations: COIL_READ 
COIL_WRITE

modbus coil
base: 0x00
length: 0x01
offset: 0x00

permissions: LOAD 
STORE

motor controller speed

states: 0 - 10

operations:
SET_SPEED 
INCREASE_SPEED 
DECREASE_SPEED 
READ_SPEED

motor controller speed: abstract

base: 0x00

length: 0x0a (10)

offset: [desired speed 0 - 10]

permissions: LOAD 
STORE

motor controller speed: memory

base: 0x00

length: 0x02 (16 bit register)

offset: 0x00

permissions: LOAD 
STORE

Physical resource Object capability Architectural capability

modbus coil
base: 0x00
length: 0x01
offset: 0x00

permissions: LOAD 
STORE

=

A coil is an object that can be energised or deenergised at a given voltage to control solenoids, energise motors, trip breakers, etc.

Physical resource Object capability Architectural capability

Motor controllers convert an intuitive input (e.g., relative speed 0 to 10) to the motor’s actual control mechanism (e.g., frequency)



Macaroons: Bearer tokens providing efficient decentralised 
delegation and attenuation of privilege


Origin:  Distributed authorisation in the cloud

Macaroon-based network capabilities

Birgisson et al. Macaroons: Cookies with Contextual Caveats for Decentralized Authorization in the Cloud, 2014
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Properties 

• Key holder can initiate/verify  

• Any holder can attenuate 

• Protected by keyed HMAC chain


Benefits for CPS 

• Limited cryptographic burden


• Ease of attenuation and delegation


• Semantic similarity to CHERI



Composing CHERI and Macaroons

CHERI to Macaroons 

• Map CHERI capability 
metadata to Macaroon 
caveats


Macaroons to CHERI 

• Verify Macaroon and derive 
a new, restricted CHERI 
capability

resource user

object macaroon
identifier
expiration0
perms: r/w
base: 0x00
length: 0x03
hash1

resource owner

object macaroon
identifier
perms: r/w
base: 0x00
length: 0x0a
hash0

key

verifier

object capability
perms: load/store
base: 0x00
length: 0x0a
offset: 0x00

object macaroon
identifier
expiration0
perms: r/w
base: 0x00
length: 0x03
request: SET_SPEED 0x01
hash2

object capability
perms: store
base: 0x01
length: 0x02
offset: 0x01



CHERI Macaroons security properties
General 

• Spatial memory safety


• Fine-grained access control at the host


Network 

• Integrity protection for unencrypted and unauthenticated protocols


Device 

• Protection against adversarial processes or tasks*


• sudo-like minimal privilege of the resource-owning process*

*provided CHERI compartments are implemented



Practicalities and challenges
Hardware support 

• MIPS and RISC-V FPGA cores


• Arm Morello and CHERI-ARM-M


Software support 

• Memory safety is (mostly) free


• Object capabilities require 
software definition


Token distribution 

• Requires manual installation or 
centralised authentication and 
distribution


• Examples:  trust on first use, 
manual distribution, Kerberos



Case study:  Modbus
Goal:  Implement CHERI, object, and network capabilities without modifying existing code


Modbus:  Ubiquitous ICS protocol commanding coils, discrete inputs, and registers


Examples: 
READ_COIL 
READ_DISCRETE_INPUT 
WRITE_REGISTER 

Platform:  
CheriBSD

CheriFreeRTOS


Performance:  
cost << RTOS loop or network delay



Summary
Capabilities support intuitive, host-based CPS access control:


• CHERI:  Efficient memory safety and basis for object capabilities in CPS


• Macaroons:  Protection for legacy protocols and simple mapping to CHERI object capabilities


• CHERI Macaroons:  Effective access control against strong adversaries on the hardware or the 
network


Ongoing CHERI compartmentalisation work:


• Trusted compartments


• Protection for intertask communication


