
CHERI Macaroons:
Efficient, host-based access control for

Cyber Physical Systems (CPS)
Michael Dodson, Alastair R. Beresford, Alexander Richardson,

Jessica Clarke, Robert N. M. Watson

Definitions

Cyber Physical Systems (CPS) tightly couple hardware and software with
sensing and manipulation of the physical environment

• Automotive, industrial, robotics, medical

A capability is a token that confers the right to access an object

• CHERI capabilities

• Macaroon network tokens

Outline
• CPS security challenges

• Capability-based access control design pattern

• CHERI capabilities for local access control

• Macaroon tokens for network access control

• Concrete implementations and initial performance assessments

Domains:

• Industrial control

• Automotive

• Robotics

• Medical

Unique considerations:

• Decades-long lifetimes

• Remote deployments

• Piecemeal replacement

• Safety-critical functions

• Expensive certification

CPS security challenges

CPS security challenges
Challenges

• Legacy protocols

• Remote monitoring and maintenance

• Limited compute and memory resources

• Heterogeneous device networks

• Flat memory spaces

Current solutions

• Boundary protection

• Intrusion/anomaly detection

Capability-based distributed system

Proposal: Capabilities provide an intuitive and efficient mechanism for controlling
access to physical ‘objects’ both on-device and between devices.

We introduce:

• Hardware-backed capabilities as tokens
to protect access to physical resources

• A model for implementing hardware-
backed tokens in distributed systems

• Efficient translation between hardware and
network tokens

Benefits:

• Decouple authentication and authorization
to offload non-real time tasks

• Integrity protection for insecure, legacy
protocols

• Natural support for static, device-to-
device communication graphs

Architectural capabilities (local)

• Hardware defined

• Operations on memory

Object capabilities (local)

• Software defined

• Operations on objects

Network capabilities (distributed)

• Software defined

• Operations on objects

• Network instantiation of a local, object capability

Capability primer: Capability types

network_capability
mapping

object_capability
mapping

arch_cap arch_cap arch_cap
enforcement
hardware

network_capability
mapping

object_capability
mapping

arch_cap arch_cap arch_cap
enforcement
hardware

CHERI architecture: Pointers become capabilities

CHERI: Capability Hardware Enhanced RISC Instructions (Watson et al. CHERI ISAv7, 2018)

• Architecturally-defined “fat pointer” with OOB validity bit used to access a memory “object”

• Carries a base, length, offset, and permissions to limit memory access range and type

• CPU instructions govern legal operations on capabilities (e.g., maintain provenance, integrity, and monotonicity)

• CPU enforces bounds and permissions on dereference operations

• omposes with “host” ISA: MIPS, RISC-V, Arm Morello

network_capability
mapping

object_capability
mapping

arch_cap arch_cap arch_cap
enforcement
hardware

CHERI architecture: Pointers become capabilities

Globals

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

CHERI protects against:

• Creating valid pointers from integer data

• Accessing globals from the heap

• Dereferencing memory from a parent capability

• Executing a capability for a data object

Other benefits for CPS:

• Software-defined isolation without MMUs

• Temporal memory safety

• High compatibility with existing code

network_capability
mapping

object_capability
mapping

arch_cap arch_cap arch_cap
enforcement
hardware

CHERI-based object capabilities
Token conferring access to software-defined ‘objects’

• E.g., sensors, actuators

This is the layer of on-device interaction

• ‘Owner’ process distributes tokens to potential ‘users’

• ‘User’ processes return token with request to ‘owner’

• ‘Owner’ verifies the object and maps it to constituent architectural capabilities

CHERI capabilities are used abstractly

• Memory addresses used to encode information, but not store data

• E.g., base:0x00 and length:0x0a encode speed settings of a motor between 0 and 10

CHERI-based object capabilities
modbus coil

states: ON
OFF

operations: COIL_READ
COIL_WRITE

modbus coil
base: 0x00
length: 0x01
offset: 0x00

permissions: LOAD
STORE

motor controller speed

states: 0 - 10

operations:
SET_SPEED
INCREASE_SPEED
DECREASE_SPEED
READ_SPEED

motor controller speed: abstract

base: 0x00

length: 0x0a (10)

offset: [desired speed 0 - 10]

permissions: LOAD
STORE

motor controller speed: memory

base: 0x00

length: 0x02 (16 bit register)

offset: 0x00

permissions: LOAD
STORE

Physical resource Object capability Architectural capability

modbus coil
base: 0x00
length: 0x01
offset: 0x00

permissions: LOAD
STORE

=

A coil is an object that can be energised or deenergised at a given voltage to control solenoids, energise motors, trip breakers, etc.

Physical resource Object capability Architectural capability

Motor controllers convert an intuitive input (e.g., relative speed 0 to 10) to the motor’s actual control mechanism (e.g., frequency)

Macaroons: Bearer tokens providing efficient decentralised
delegation and attenuation of privilege

Origin: Distributed authorisation in the cloud

Macaroon-based network capabilities

Birgisson et al. Macaroons: Cookies with Contextual Caveats for Decentralized Authorization in the Cloud, 2014

network_capability
mapping

object_capability
mapping

arch_cap arch_cap arch_cap
enforcement
hardware

Properties

• Key holder can initiate/verify

• Any holder can attenuate

• Protected by keyed HMAC chain

Benefits for CPS

• Limited cryptographic burden

• Ease of attenuation and delegation

• Semantic similarity to CHERI

Composing CHERI and Macaroons

CHERI to Macaroons

• Map CHERI capability
metadata to Macaroon
caveats

Macaroons to CHERI

• Verify Macaroon and derive
a new, restricted CHERI
capability

resource user

object macaroon
identifier
expiration0
perms: r/w
base: 0x00
length: 0x03
hash1

resource owner

object macaroon
identifier
perms: r/w
base: 0x00
length: 0x0a
hash0

key

verifier

object capability
perms: load/store
base: 0x00
length: 0x0a
offset: 0x00

object macaroon
identifier
expiration0
perms: r/w
base: 0x00
length: 0x03
request: SET_SPEED 0x01
hash2

object capability
perms: store
base: 0x01
length: 0x02
offset: 0x01

CHERI Macaroons security properties
General

• Spatial memory safety

• Fine-grained access control at the host

Network

• Integrity protection for unencrypted and unauthenticated protocols

Device

• Protection against adversarial processes or tasks*

• sudo-like minimal privilege of the resource-owning process*

*provided CHERI compartments are implemented

Practicalities and challenges
Hardware support

• MIPS and RISC-V FPGA cores

• Arm Morello and CHERI-ARM-M

Software support

• Memory safety is (mostly) free

• Object capabilities require
software definition

Token distribution

• Requires manual installation or
centralised authentication and
distribution

• Examples: trust on first use,
manual distribution, Kerberos

Case study: Modbus
Goal: Implement CHERI, object, and network capabilities without modifying existing code

Modbus: Ubiquitous ICS protocol commanding coils, discrete inputs, and registers

Examples:
READ_COIL
READ_DISCRETE_INPUT
WRITE_REGISTER

Platform:
CheriBSD

CheriFreeRTOS

Performance:
cost << RTOS loop or network delay

Summary
Capabilities support intuitive, host-based CPS access control:

• CHERI: Efficient memory safety and basis for object capabilities in CPS

• Macaroons: Protection for legacy protocols and simple mapping to CHERI object capabilities

• CHERI Macaroons: Effective access control against strong adversaries on the hardware or the
network

Ongoing CHERI compartmentalisation work:

• Trusted compartments

• Protection for intertask communication

