NOP-Oriented Programming:
Should we Care?

Pierre-Yves Péeneau, Ludovic Claudepierre, Damien Hardy, Erven Rohou
Univ Rennes, Inria, CNRS, IRISA

SILM workshop - Friday, September 11th 2020

boia— |\ @ "l ©irisa

CentraleSupélec

NOP-Oriented Programming: Should we Care?

Introduction

« Fault injection nowadays
« ElectroMagnetic Pulse (EMP)
« Laser injection
« Clock glitch

11 - September 2020 2

NOP-Oriented Programming: Should we Care?

Introduction

« Fault injection nowadays
« ElectroMagnetic Pulse (EMP)
« Laser injection
« Clock glitch

11 - September 2020 2

NOP-Oriented Programming: Should we Care?

Introduction

« Fault injection nowadays
« ElectroMagnetic Pulse (EMP)
« Laser injection
« Clock glitch

. Efficient but limited to 1 or few injections

« Lack of precision
« EMP/laser: unavoidable delay between 2 injections

11 - September 2020 2

NOP-Oriented Programming: Should we Care?

Approach and questions

« What if an attacker can overcome these limitations?
« No delay between injection
« High precision (instruction-level)
« Unlimited number of faults

« Questions:
1. What are the possibilities for an attacker?
2. Can we simulate this?

11 - September 2020

NOP-Oriented Programming: Should we Care?

Fault model : NOP-Oriented programming

» Base fault model: instruction skip*
« An attacker is able to entirely skips a specific instruction
« Skipping an instruction replaces this instruction by a NOP

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

11 - September 2020 4

NOP-Oriented Programming: Should we Care?

Fault model : NOP-Oriented programming

» Base fault model: instruction skip*
« An attacker is able to entirely skips a specific instruction
« Skipping an instruction replaces this instruction by a NOP

« Our model: instruction-skip by a factor of hundreds/thousands
« Program mainly driven by NOP
« Select which instruction you want to execute

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

11 - September 2020 4

NOP-Oriented Programming: Should we Care?

Fault model : NOP-Oriented programming

» Base fault model: instruction skip*
« An attacker is able to entirely skips a specific instruction
« Skipping an instruction replaces this instruction by a NOP

« Our model: instruction-skip by a factor of hundreds/thousands
« Program mainly driven by NOP
« Select which instruction you want to execute

» That's what we call NOP-Oriented Programming

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

11 - September 2020 4

Theoretical
analysis

Possibilities with a NOP-Oriented
programming model

11 - September 2020

NOP-Oriented Programming: Should we Care?

Assumptions

« The binary contains a minimal set of instructions:
. load/store
e MOVe
. add
« Sub

» The binary is bug-free
« No backdoor is necessary

« ARM Instruction set
« Could be applied to other ISA

11 - September 2020

NOP-Oriented Programming: Should we Care?

Control Flow Hijacking (attack 1)

« Any Iinstruction can be skipped to reach any address

« From an address A, any address A’
where A’ > A can be reached

11 - September 2020

NOP-Oriented Programming: Should we Care?

Control Flow Hijacking (attack 1)

« Any Iinstruction can be skipped to reach any address

@A :inst. 1
, A+2 : inst. 2
« From an address A, any address A @Axz :ins
where A’ > A can be reached L
@A’-1 : inst. n-1
@A’ :inst.n

11 - September 2020

NOP-Oriented Programming: Should we Care?

Control Flow Hijacking (attack 1)

« Any Iinstruction can be skipped to reach any address

@A !nst. 1
« From an address A, any address A’ &P’
where A’ > A can be reached AV -

@A’ :inst.n

11 - September 2020

NOP-Oriented Programming: Should we Care?

Control Flow Hijacking (attack 1)

« Any Iinstruction can be skipped to reach any address

@A !nst. 1
« From an address A, any address A’ Y& °
where A’ > A can be reached 0
@AY inst. n-1
@A’ :inst.n

« With branches, almost any address could be reached
» Starting from @A, how to reach @B?

11 - September 2020

NOP-Oriented Programming: Should we Care?

Control Flow Hijacking (attack 1)

« Any Iinstruction can be skipped to reach any address

« From an address A, any address A’
where A’ > A can be reached

« With branches, almost any address could be reached
» Starting from @A, how to reach @B?

11 - September 2020

@A :inst. 1

@Ax |
@AY il n-1

@A’ :inst.n

@B :inst. n+1
@A :inst. 1

@A’-1 : inst. n-1
@A’ :branch B

NOP-Oriented Programming: Should we Care?

Control Flow Hijacking (attack 1)

« Any Iinstruction can be skipped to reach any address

« From an address A, any address A’
where A’ > A can be reached

« With branches, almost any address could be reached
» Starting from @A, how to reach @B?

11 - September 2020

@A :inst. 1

@Ax |
@AY il n-1

@A’ :inst.n

@B :inst. n+1

@A :inst. 1

@A™-1

@A’ :branch B

NOP-Oriented Programming: Should we Care?

Control loop iteration (attack 2)

« Do fewer iterations by:

» Do more iterations by:

11 - September 2020

mov r4, #10
label:
sub r4, r4, #1

cmpr4, 0
bne label

endloop:

NOP-Oriented Programming: Should we Care?

Control loop iteration (attack 2)

« Do fewer iterations by:
. Replace entire body by NOP

» Do more iterations by:

11 - September 2020

mov r4, #10
label:

S

1
m
bn

C

endloop:

NOP-Oriented Programming: Should we Care?

Control loop iteration (attack 2)

« Do fewer iterations by:
. Replace entire body by NOP

« NOP the conditional branch at the end and exit oV }Li, 410
label:
sub r4 r4, #1
. Do more iterations by: cmp r4, 0

endloop:

11 - September 2020

NOP-Oriented Programming: Should we Care?

Control loop iteration (attack 2)

« Do fewer iterations by:
. Replace entire body by NOP

- NOP the conditional branch at the end and exit mov rd. #10
label:
ettt

. Do more iterations by: omp . 0

« NOP the instruction which controls the loop condition

Typically a subtraction on a counter endloop:

11 - September 2020

NOP-Oriented Programming: Should we Care?

Control loop iteration (attack 2)

« Do fewer iterations by:
. Replace entire body by NOP
« NOP the conditional branch at the end and exit

» Do more iterations by:

« NOP the instruction which controls the loop condition
Typically a subtraction on a counter

« NOP the compare instruction
This relies on the current state of the control flags

11 - September 2020

mov r4, #10
label:

sub r4 r4, #1
SRt Ge—

bne label

endloop:

NOP-Oriented Programming: Should we Care?

Write any possible value in a register (attack 3)

« This relies on the presence of
o Instruction(s) to increment a register

« move or load mov r4, #10

label:

sub r4d, r4, #1
cmpr4, 0
bne label

endloop:

11 - September 2020

NOP-Oriented Programming: Should we Care?

Write any possible value in a register (attack 3)

« This relies on the presence of
o Instruction(s) to increment a register

. move or load o 4, #10
abel:
1. Use a controlled loop (attack 2)
We control the number of iterations
cmpr4, 0
bne label
endloop:

11 - September 2020

NOP-Oriented Programming: Should we Care?

Write any possible value in a register (attack 3)

o This relies on the presence of
o Instruction(s) to increment a register mov r0, #0

« move or load mov r4, #10
label:
1. Use a controlled loop (attack 2) add fO 0, #1
We control the number of iterations
2. Use a register Rs whose content is controlled P
cmpr4, 0
bne label
endloop:

11 - September 2020

NOP-Oriented Programming: Should we Care?

Write any possible value in a register (attack 3)

o This relies on the presence of
o Instruction(s) to increment a register mov r0, #0

. move or load mov r4, #10
label:
1. Use a controlled loop (attack 2) 20d 0,10, #1
We control the number of iterations mov r3, r0
2. Use aregister Rs whose content is controlled S
3. Use a move instruction from Rs into Rd cmp r4, 0
ne labe
endloop:

11 - September 2020

NOP-Oriented Programming: Should we Care?

Write any possible value in a register (attack 3)

o This relies on the presence of
o Instruction(s) to increment a register mov r0, #0

. move or load mov r4, #10
label:
1. Use a controlled loop (attack 2) 20d 0,10, #1
We control the number of iterations mov r3, r0
2. Use aregister Rs whose content is controlled S
3. Use a move instruction from Rs into Rd cmp r4, 0
. e=iRe=lise
4. Exit the loop (attack 1)
endloop:

11 - September 2020

NOP-Oriented Programming: Should we Care?

Write any possible value in a register (attack 3)

o This relies on the presence of
o Instruction(s) to increment a register mov r0, #0

. move or load mov r4, #10
label:
1. Use a controlled loop (attack 2) 20d 0,10, #1
We control the number of iterations mov r3, r0
2. Use aregister Rs whose content is controlled S
3. Use a move instruction from Rs into Rd cmp r4, 0
. e=iRe=lise
4. Exit the loop (attack 1)
endloop:

« This can be extended to a set of registers (see paper)

11 - September 2020

NOP-Oriented Programming: Should we Care?

Load & store from a register (attack 4)

« Rm represents a memory address
« Rs represents a value to store

11 - September 2020

mov rO, #0

mov r1, #0

mov r4, #10
label:

add r0, r0, #1
add r1, r1, #1

sub r4d, r4, #1
cmpr4, 0
bne label

endloop:

10

NOP-Oriented Programming: Should we Care?

Load & store from a register (attack 4)

« Rm represents a memory address
« Rs represents a value to store
» Both registers content are controlled (attack 3)

11 - September 2020

mov rO, #0

mov r1, #0

mov r4, #10
label:

add r0, r0, #1
add r1, r1, #1
oo T T T
cmpr4, 0
[T P

endloop:

NOP-Oriented Programming: Should we Care?

Load & store from a register (attack 4)

« Rm represents a memory address
« Rs represents a value to store
» Both registers content are controlled (attack 3)

« TO read in memory, reach a load that uses Rm
« No need of Rs for reading

11 - September 2020

mov rO, #0

mov r1, #0

mov r4, #10
label:

add r0, r0, #1
add r1, r1, #1

oo T T
cmpr4, 0
[T P

endloop:

o3

|dr rX, [rO]

10

NOP-Oriented Programming: Should we Care?

Load & store from a register (attack 4)

« Rm represents a memory address
« Rs represents a value to store
» Both registers content are controlled (attack 3)

« TO read in memory, reach a load that uses Rm
« No need of Rs for reading

» TO write In memory, reach a store that uses Rm and Rs

11 - September 2020

mov rO, #0

mov r1, #0

mov r4, #10
label:

add r0, r0, #1
add r1, r1, #1

oo T T
cmpr4, 0
[T P

endloop:

Idr

strr1, [rO]

10

NOP-Oriented Programming: Should we Care?

Load & store from a register (attack 4)

« Rm represents a memory address
« Rs represents a value to store
» Both registers content are controlled (attack 3)

« TO read in memory, reach a load that uses Rm
« No need of Rs for reading

» TO write In memory, reach a store that uses Rm and Rs
o If no such instruction, use other registers with move (attack 3)

11 - September 2020

mov rO, #0

mov r1, #0

mov r4, #10
label:

add r0, r0, #1
add r1, r1, #1

oo T T
cmpr4, 0
[T P

endloop:

Idr

strr1, [rO]

10

NOP-Oriented Programming: Should we Care?

Load & store from a register (attack 4)

« Rm represents a memory address
« Rs represents a value to store
» Both registers content are controlled (attack 3)

« TO read in memory, reach a load that uses Rm
« No need of Rs for reading

» TO write In memory, reach a store that uses Rm and Rs
o If no such instruction, use other registers with move (attack 3)

« This can be extended to a set of registers (see paper)

11 - September 2020

mov rO, #0

mov r1, #0

mov r4, #10
label:

add r0, r0, #1
add r1, r1, #1

oo T T
cmpr4, 0
[T P

endloop:

Idr

strr1, [rO]

10

NOP-Oriented Programming: Should we Care?

Jump to any address (attack 5)

« Rd represents the destination of a branch

11 - September 2020

mov rO, #0

mov r4, #10
label:

add r0, r0, #1

sub r4, r4, #1
cmpr4, 0
bne label

endloop:

11

NOP-Oriented Programming: Should we Care?

Jump to any address (attack 5)

« Rd represents the destination of a branch
« Rd is a controlled register

11 - September 2020

mov rO, #0

mov r4, #10
label:

add r0, r0, #1

e
cmpr4, 0
[e T

endloop:

11

NOP-Oriented Programming: Should we Care?

Jump to any address (attack 5)

« Rd represents the destination of a branch
« Rd is a controlled register

o Find an unconditional branch to Rd:
bix Rd

11 - September 2020

mov rO, #0
mov r4, #10
label:

add r0, r0, #1
 ar e

cmpr4, 0
eSSt

endloop:

blx rO

11

NOP-Oriented Programming: Should we Care?

Jump to any address (attack 5)

« Rd represents the destination of a branch
« Rd is a controlled register

o Find an unconditional branch to Rd:

bix Rd
« Execute

11 - September 2020

mov rO, #0

mov r4, #10
label:

add r0, r0, #1

e
cmpr4, 0
[e T

endloip:

blx rO

11

NOP-Oriented Programming: Should we Care?

Jump to any address (attack 5)

. Rd represents the destination of a branch mov rg o
.) mov r4,
« Rd is a controlled register label:
. N add r0, 0, #1
« Find an unconditional branch to Rd:
bIX Rd cmp r4,, O,
o Execute S
endloagp:
. Use the stack: *
push Rd
blx rO
POP pC

11 - September 2020 11

NOP-Oriented Programming: Should we Care?

Summary of possibilities

1) CFG Hijacking
2) Control loop iteration
3) Control register(s) content

4) Load/Store from register(s)
5) Jump to any address

11 - September 2020

12

NOP-Oriented Programming: Should we Care?

Summary of possibilities

1) CFG Hijacking b
2) Control loop iteration
3) Control register(s) content

4) Load/Store from register(s)
5) Jump to any address

11 - September 2020

Direct dependency

p

12

NOP-Oriented Programming: Should we Care?

Summary of possibilities

1) CFG Hijacking b
2) Control loop iteration b
3) Control register(s) content

4) Load/Store from register(s)
5) Jump to any address

11 - September 2020

Direct dependency

p

12

NOP-Oriented Programming: Should we Care?

Summary of possibilities

1) CFG Hijacking b
2) Control loop iteration b
3) Control register(s) content

4) Load/Store from register(s)
5) Jump to any address

11 - September 2020

Direct dependency

p

12

NOP-Oriented Programming: Should we Care?

Summary of possibilities

1) CFG Hijacking b
2) Control loop iteration b
3) Control register(s) content

4) Load/Store from register(s)
5) Jump to any address

11 - September 2020

Direct dependency

p

12

NOP-Oriented Programming: Should we Care?

Summary of possibilities

1) CFG Hijacking b
2) Control loop iteration b
3) Control register(s) content

4) Load/Store from register(s)
5) Jump to any address

This Is Turing-Complete (proof in the paper)

11 - September 2020

Direct dependency

p

12

Application to
(almost) real life

NOP-Oriented programming in a nutshell

11 - September 2020

NOP-Oriented Programming: Should we Care?

Disclaimer

« We present two attacks:
1) How to retrieve the encryption key used in AES
2) How to write user-defined data in memory

« However, this is not specific to AES

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).
11 - September 2020 14

NOP-Oriented Programming: Should we Care?

Disclaimer

« We present two attacks:
1) How to retrieve the encryption key used in AES
2) How to write user-defined data in memory

« However, this is not specific to AES

« We only need a minimum set of instructions

» Our target: ARM embedded systems
« NO memory protection

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).
11 - September 2020 14

NOP-Oriented Programming: Should we Care?

Disclaimer

« We present two attacks:
1) How to retrieve the encryption key used in AES
2) How to write user-defined data in memory

« However, this is not specific to AES

« We only need a minimum set of instructions

» Our target: ARM embedded systems
« NO memory protection

. Realised in the gem5” simulator
. Replay fault model has been implemented
. Few attacks tested on real board

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).
11 - September 2020 14

NOP-Oriented Programming: Should we Care?

Adaptation of the fault model

» Theory: skipping an instruction has no side-effect

« NOP-Oriented Programming

11 - September 2020

15

NOP-Oriented Programming: Should we Care?

Adaptation of the fault model

« Theory: skipping an instruction has no side-effect
« NOP-Oriented Programming

« Experienced fault model: skipping an instruction repeats the N
previous ones

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

11 - September 2020 15

NOP-Oriented Programming: Should we Care?

Adaptation of the fault model

« Theory: skipping an instruction has no side-effect
« NOP-Oriented Programming

« Experienced fault model: skipping an instruction repeats the N
previous ones

o N Is the size of the instruction buffer
« N =1 in our experiments

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

11 - September 2020 15

NOP-Oriented Programming: Should we Care?

Adaptation of the fault model

« Theory: skipping an instruction has no side-effect
« NOP-Oriented Programming

« Experienced fault model: skipping an instruction repeats the N
previous ones

o N Is the size of the instruction buffer
« N =1 in our experiments

o Limits the attacker
. cannot repeat a PC-relative load for example

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

11 - September 2020 15

NOP-Oriented Programming: Should we Care?

Adaptation of the fault model

« Theory: skipping an instruction has no side-effect
« NOP-Oriented Programming

« Experienced fault model: skipping an instruction repeats the N
previous ones

o N Is the size of the instruction buffer
« N =1 in our experiments

o Limits the attacker
. cannot repeat a PC-relative load for example

ldr rO, [pc, #-32]
add r0, rO, r1

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

11 - September 2020 15

NOP-Oriented Programming: Should we Care?

Adaptation of the fault model

« Theory: skipping an instruction has no side-effect
« NOP-Oriented Programming

« Experienced fault model: skipping an instruction repeats the N
previous ones

o N Is the size of the instruction buffer
« N =1 in our experiments

o Limits the attacker
. cannot repeat a PC-relative load for example

ldr 10, [pc, #-32] — ldr rO, [pc, #-32]
add ro0, r0, rl ldr rO, [pc, #-32]

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

11 - September 2020 15

NOP-Oriented Programming: Should we Care?

Adaptation of the fault model

« Theory: skipping an instruction has no side-effect
« NOP-Oriented Programming

« Experienced fault model: skipping an instruction repeats the N
previous ones

o N Is the size of the instruction buffer
« N =1 in our experiments

o Limits the attacker
. cannot repeat a PC-relative load for example

Idr 1O, [pc, #-32] — ldr rO, [pc, #-32] ‘ Possible side-effect
add ro, r0, rl1 Idr O, [pc, #-32] on r0

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

11 - September 2020 15

NOP-Oriented Programming: Should we Care?

Base program

memset(cipher, 0, BUF_SIZE);
sprintf(plain, "%s", "thisisaplaintext");
sprintf(key, "%s", "0123456789ABCDEF");

11 - September 2020

L Init phase

16

11 - September 2020

Base program

NOP-Oriented Programming: Should we Care?

memset(cipher, 0, BUF_SIZE);
sprintf(plain, "%s", "thisisaplaintext");
sprintf(key, "%s", "0123456789ABCDEF");

AESEnNcrypt(cipher, plain, key);
printf("%s\n", cipher);

L Init phase

__ Compute phase

16

Base program

NOP-Oriented Programming: Should we Care?

memset(cipher, 0, BUF_SIZE);
sprintf(plain, "%s", "thisisaplaintext");
sprintf(key, "%s", "0123456789ABCDEF");

AESEnNcrypt(cipher, plain, key);
printf("%s\n", cipher);

» Goal: retrieve the key

11 - September 2020

L Init phase

__ Compute phase

16

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (1/2)

« AESENcrypt(cipher, plain, key);
- key is in r2 (function call convention)

11 - September 2020

17

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (1/2)

« AESENcrypt(cipher, plain, key);
- key is in r2 (function call convention)

o printf("%s\n", cipher);
—> String to print is in rl1 (function call convention)

11 - September 2020

17

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (1/2)

« AESENcrypt(cipher, plain, key);
- key is in r2 (function call convention)

o printf("%s\n", cipher);
—> String to print is in rl1 (function call convention)

. Idea: move r2 into rl, then call printf()

11 - September 2020

17

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

| <abort>:
E <main>:”. 1) MOVG r2 |nt0 rl
2) Call printf()
<Encrypt>:

E oS

105d0: push {fp, 1lr}

105d4: add fp, sp, #4

105d8: sub sp, sp, #248
105dc: str r0, [fp, #-240]
105e0: str rl, [fp, #-244]
105e4: str r2, [fp, #-248]
105e8: sub r3, fp, #24
105ec: ldr «rl, [fp, #-248]

h

=)

o

[Y Y S G O S
=] =B |

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

<abort>:
» <main>: 1) Move r2 into rl
4 ce .
2) Call printf()
key is in r2
» 13 <Encrypt>:
14 105d0: push {fp, 1lr}
15 105d4: add fp, sp, #4
16 105d8: sub sp, sp, #248
17 105dc: str r0, [fp, #-240]
18 105e0: str rl, [fp, #-244]
19 105e4: str r2, [fp, #-248]
20 105e8: sub r3, fp, #24
21 105ec: 1ldr 1, [fp, #-248]

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

| <abort>:
»<main: 1) Move r2 into rl1
2) Call printf()
key is in r2
> 3 <Encrypt>:
4 105d0: push {fp, 1r}

h

105d4: add fp, sp, #4

105d8: sub sp, sp, #248
105dc: str r0, [fp, #-240]
105e0: str rl, [fp, #-244]
105e4: str r2, [fp, #-248]
20 105e8: sub r3, fp, #24

21 105ec: ldr «rl1, [fp, #-248]

(el = s T =

Store at $fp-248

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

| <abort>:
2» <main>:”. 1) MOVG r2 |nt0 rl
2) Call printf()
key is in r2
> <Encrypt>:

E oS

105d0: push {fp, 1lr}

105d4: add fp, sp, #4

105d8: sub sp, sp, #248

105dc: str r0, [fp, #-240]

105e0: str rl, [fp, #-244]

105e4: str r2, [fp, #-248] 1: inst.
105e8: sub r3, fp, #24

105ec: ldr rl, [fp, #-248] . O Teach

h

=)

Store at $fp-248

o

[Y Y S G O S
=] =B |

Load into rL

11 - September 2020

key is in r2

Store at $fp-248

Load into rL

11 - September 2020

1
2
3
4

s

D e e b = e e
= =)

26

NOP-Oriented Programming: Should we Care?

<abort>:

<main>:

<Encrypt>:

105d0: push {fp, 1lr}

105d4: add fp, sp, #4

105d8: sub sp, sp, #248

105dc: str r0, [fp, #-240]

105e0: str rl, [fp, #-244]

105e4: str r2, [fp, #-248] 1: inst.
105e8: sub r3, fp, #24

105ec: ldr rl, [fp, #-248] . O Teach
105f0: meov—rO;—=r3

<__assert_fail base>:

llef4: bl 10170 <abort>

Attack #1 : get the encryption key (2/2)

1) Move r2 into rl
2) Call printf()

18

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

| <abort>:
E <main>:”. 1) MOVG r2 |nt0 rl
2) Call printf()

key is in r2
> 3 <Encrypt>:

105d0: push {fp, 1lr}

5 105d4: add fp, sp, #4

105d8: sub sp, sp, #248

7 105dc: str r0, [fp, #-240]

8 105e0: str rl1, [fp, #-244]

9 105e4: str r2, [fp, #-248] 1: inst.

20 105e8: sub r3, fp, #24

2 105ec: ldr rl, [fp, #-248] . tO reach

22 105f0: mov—rb—r3

s

=)

Store at $fp-248

Load into rL

24 <__ assert fail base>:

26 1lef4: |bl 10170 <abort>

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

| <abort>:
E <main>:”. 1) MOVG r2 |nt0 rl
2) Call printf()

key is in r2
> 3 <Encrypt>:

105d0: push {fp, 1lr}

5 105d4: add fp, sp, #4

105d8: sub sp, sp, #248

7 105dc: str r0, [fp, #-240]

8 105e0: str rl1, [fp, #-244]

9 105e4: str r2, [fp, #-248] 1: inst.

20 105e8: sub r3, fp, #24

s

=)

Store at $fp-248

Loadintorl " gooc: tar r1, [fp, #-248) . tO reach
2 105f0: meov—rb—r3
23 2: nop
24 <__assert_fail base>:
. burst I

26 1lef4: |bl 10170 <abort>

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

<abort>:

1) Move r2 into rl
2) Call printf()

1
2
3 <main>:
4

key is in r2
> 3 <Encrypt>:

4 105d0: push {fp, 1r}

5 105d4: add fp, sp, #4

105d8: sub sp, sp, #248

7 105dc: str r0, [fp, #-240]

8 105e0: str rl1, [fp, #-244]

9 105e4: str «r2, [fp, #-248] 1:

20 105e8: sub r3, fp, #24

2 105ec: ldr rl, [fp, #-248] . tO reach

22 105f0: mov—rb—r3

-}

Store at $fp-248

inst.
Load into rL

R 2: nop
24 <__ assert fail base>:
burst

26 1lef4: |bl 10170 <abort>

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

<abort>: _

1
) <main>: 1) Move r2 into rl
4 . .
5 10594: der—e2, {fp, 163 4: nop 2) Call prm’[f()
6 10598: dtdr—=t—"FFp+—+5+ burst
7 1059c: Tdr—b—"FTfp+—#—1+23
g 105a0: b+ 16546 EL:L_.J._\"LJt
9 105a4: ‘er—=t—ffp—H—121 N
0 105a8: 1ldr r0, [pc, #28]
I 105ac: bl 17cc4 <_IO_printf> 3.
key is in r2 2
> 3 <Encrypt>:

I

1

1

I

14 105d0: push {fp, 1lr}

15 105d4: add fp, sp, #4
16 105d8: sub sp, sp, #248

17 105dc: str r0, [fp, #-240]

18 105e0: str rl, [fp, #-244]

19 105e4: str r2, [fp, #-248] 1: inst.
20 105e8: sub r3, fp, #24

2 105ec: ldr rl, [fp, #-248] . tO reach
22 105f0: mov—rb—r3

Store at $fp-248

Load into rL

2: nop

24 <__assert_fail base>: burst

26 1lef4: |bl 10170 <abort>

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

<abort>: _

1
s <main>: 1) Move r2 into rl
4 . .
5 10594: der—e2, {fp, 163 4: nop 2) Call prm’[f()
6 10598: dtdr—=t—"FFp+—+5+ burst
7 1059c: Tdr—b—"FTfp+—#—1+23
g 105a0: Bt 550 EL:L_.J._\"LJt
9o 105a4: dar—et—ffp—H—127)
0 105a8: |1dr 0, I[pc, #28]
105ac: |bl 17ccd4 <_I0_printf> 3.

1
1
key isin r2 1
» 13 <Encrypt>:
14 105d0: push {fp, 1lr}
15 105d4: add fp, sp, #4
1
|
1
1

6 105d8: sub sp, sp, #248

7 105dc: str r0, [fp, #-240]
8 105e0: str rl1, [fp, #-244]
9 105e4: str r2, [fp, #-248] 1: inst.
0 105e8: sub r3, fp, #24

2 105ec: ldr rl, [fp, #-248] . tO reach
22 105f0: mov—rb—r3

Store at $fp-248

Load into rL

2: nop

24 <__assert_fail base>: burst

26 1lef4: |bl 10170 <abort>

11 - September 2020

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

| <abort>: —

; <main>: 1) MOVG r2 IntO rl

+ PRI .

5 10594: der—r2—ffp 416 2) Call prlntf()

6 10598: dtdr—=t—"FFp+—+5+

7 1059c: teb b fEp 4327

g 105a0: b+ 16548 Eu_.i__\”:.it

9o 105a4.;: +dr—rt—FFp—HF—121 4

105 et i) « TWo bursts of nops are
105ac: |bl 17ccd4 <_I0_printf> necessary

[R S

key isin r2
> <Encrypt>:

105d0: push {fp, 1lr}

5 105d4: add fp, sp, #4

105d8: sub sp, sp, #248

105dc: str 0, [fp, #-240]

8 105e0: str rl1, [fp, #-244]

9 105e4: str «r2, [fp, #-248] 1

20 105e8: sub r3, fp, #24

2 105ec: ldr rl, [fp, #-248] . tO reach

22 105f0: mov—rb—r3

23 ce 2: nop
24 <__ assert fail base>:
burst

s

~1 o

Store at $fp-248

: inst.
Load into rL

26 1lef4: |bl 10170 <abort>

11 - September 2020 18

NOP-Oriented Programming: Should we Care?

Attack #1 : get the encryption key (2/2)

<abort>: —
s <main>: 1) Move r2 into r1
4 . ;
5 10594: ter =2, ltfp 416 2) Call printf()
6 10598: dtdr—=t—"FFp+—+5+
7 1059c: Fer—eb—tEp—h—12]
g 105a0: bI—165d0—<Brerypt
9 105a4d: +er—t—7FFp—H—121
R e « TWo bursts of nops are

105ac: |bl 17ccd4 <_I0_printf>

key is in r2 < necessary
> 3 <Encrypt>:

4 105d0: push {fp, 1r}

5 105d4: add fp, sp, #4

6 105d8: sub sp, sp, #248

7 105dc: str r0, [fp, #-240]

8 105e0: str rl1, [fp, #-244]

9 105e4: str «r2, [fp, #-248] 1:

20 105e8: sub r3, fp, #24

2 105ec: ldr rl, [fp, #-248] . tO reach

22 105f0: mov—rb—r3

23 ... 2 : nop
24 <__assert_fail base>: burst

« More generic attacks to
retrieve the key are
presented in the paper

Store at $fp-248

inst.

Load into rL

26 1lef4: |bl 10170 <abort>

11 - September 2020 18

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in theory)

. Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

memset(cipher, 0, BUF_SIZE);,

AESEnNcrypt(cipher, plain, key);
printf("%s\n", cipher);

11 - September 2020

19

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in theory)

. Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

Init

memset(cipher, 0, BUF_SIZE);,
AESEncrypt(cipher, plain, key);
printf("%s\n", cipher);

11 - September 2020

19

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in theory)

. Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

Init
Attack

memset(cipher, 0, BUF_SIZE);,
AESEncrypt(cipher, plain, key);
printf("%s\n", cipher);

11 - September 2020

19

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in theory)

. Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

Init memset(cipher, 0, BUF_SIZE);
Attack AESEnNcrypt(cipher, plain, key);
Display . printf("%s\n", cipher);

11 - September 2020

19

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in theory)

. Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

Init memset(cipher, 0, BUF_SIZE);
Attack AESEnNcrypt(cipher, plain, key);
Display . printf("%s\n", cipher);

» How? Take control of a loop to:

11 - September 2020

19

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in theory)

. Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

Init memset(cipher, 0, BUF_SIZE);
Attack AESEnNcrypt(cipher, plain, key);
Display . printf("%s\n", cipher);

» How? Take control of a loop to:
1) Re-create the address of cipher in register Rm

11 - September 2020

19

NOP-Oriented Programming: Should we Care?

. Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

Init memset(cipher, 0, BUF_SIZE);
Attack AESEnNcrypt(cipher, plain, key);
Display . printf("%s\n", cipher);

» How? Take control of a loop to:
1) Re-create the address of cipher in register Rm
2) Set the decimal value for a character in register Rs

11 - September 2020

Attack #2: Write custom data in memory (in theory)

19

NOP-Oriented Programming: Should we Care?

o Idea: hijack cipher buffer to write custom data
- ASCII characters in this example

Init memset(cipher, 0, BUF_SIZE);
Attack AESEnNcrypt(cipher, plain, key);
Display . printf("%s\n", cipher);

» How? Take control of a loop to:
1) Re-create the address of cipher in register Rm
2) Set the decimal value for a character in register Rs
3) Find a store instruction that use Rm and Rs

11 - September 2020

Attack #2: Write custom data in memory (in theory)

19

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in practice)

o lllustration with “Hello World!”

<AESEncrypt>:

1. Call AESEncrypt()

11 - September 2020

20

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in practice)

o lllustration with “Hello World!”

C ” AESE t <AESEncrypt>:
1. Ca ncr
yp () mov r0, #0 /I the memory address

mov r1, #0 /l the ASCII value

11 - September 2020

20

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in practice)

o lllustration with “Hello World!”

<AESEncrypt>:

1. Call AESEncrypt()

mov r0, #0 /[the memory address
mov r1, #0 /l the ASCII value

loop:

cmp
bne loop
endloop:

11 - September 2020

20

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in practice)

o lllustration with “Hello World!”

<AESEncrypt>:
1. Call AESEncrypt()
. . mov r0, #0 /[the memory address
2. Do as many Iteration as mov r1, #0 /I the ASCII value

necessary

loop:

cmp
bne loop
endloop:

11 - September 2020

20

o lllustration with “Hello World!”

1. Call AESEncrypt()
2. Do as many iteration as
necessary

11 - September 2020

NOP-Oriented Programming: Should we Care?

<AESEncrypt>:

mov r0, #0
mov r1, #0

loop:
add r0, r0, #1
cmp

bne loop
endloop:

Attack #2: Write custom data in memory (in practice)

// the memory address
// the ASCII value

/| Executed N times, with N = @cipher

20

NOP-Oriented Programming: Should we Care?

o lllustration with “Hello World!”

1. Call AESEncrypt()
. . mov r0, #0
2. Do as many Iteration as mov r1, #0
necessary :

loop:

add r0, r0, #1
add r1, r1, #1

cmp
bne loop
endloop:

11 - September 2020

<AESEncrypt>:

Attack #2: Write custom data in memory (in practice)

// the memory address
// the ASCII value

/| Executed N times, with N = @cipher
/I Executed 72 times (‘H’ character)
// then always skipped

20

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in practice)

o lllustration with “Hello World!”

<AESEncrypt>:
1. Call AESEncrypt()
. . mov r0, #0 /[the memory address
2. Do as many Iteration as mov r1, #0 /I the ASCII value
necessary oop:

3. Exitthe loop

add r0, r0, #1 /| Executed N times, with N = @cipher
add r1, r1, #1 // Executed 72 times (‘H’ character)
// then always skipped
cmp
bne loop
endloop:

11 - September 2020 20

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in practice)

o lllustration with “Hello World!”

<AESEncrypt>:
1. Call AESEncrypt()
. . mov r0, #0 /[the memory address
2. Do as many Iteration as mov r1, #0 /I the ASCII value
necessary oop:

. Exitthe |
3 t the OOp add r0, r0, #1 /I Executed N times, with N = @cipher

4. StOre the Value add r1, r1, #1 // Executed 72 times (‘H’ character)

// then always skipped
cmp
bne loop
endloop:

strr1, [rO]

11 - September 2020 20

NOP-Oriented Programming: Should we Care?

Attack #2: Write custom data in memory (in practice)

o lllustration with “Hello World!”

<AESEncrypt>:
1. Call AESEncrypt()
. . mov r0, #0 /[the memory address
2. Do as many Iteration as mov r1, #0 /I the ASCII value
necessary 0op:
3. Exitthe loop addr0, 0, #1 J/ Executed N times, with N = @cipher
4. StOre the Value add r1, r1, #1 // Executed 72 times (‘H’ character)
// then always skipped
5. Restart cmp
bne loop
endloop:
strr1 .[.rO]

11 - September 2020 20

Conclusion

Let’s try to summarize and answer our guestions

11 - September 2020

NOP-Oriented Programming: Should we Care?

Summary

. Q1. What are the possibilities for an attacker?
« Hijack CFG
« Control registers
« Write in memory
- The attacker executes what he wants (full control)

11 - September 2020

22

NOP-Oriented Programming: Should we Care?

Summary

. Q1. What are the possibilities for an attacker?
« Hijack CFG
« Control registers
« Write in memory
- The attacker executes what he wants (full control)

« Q2. Can we simulate this fault model?
« gemb5 simulator
« Setup available at https://qgitlab.inria.fr/gem5-nop/gem5

o Simulator modifications + all source code and binaries
« Successfully retrieve a key with AES
« Successfully altered memory

11 - September 2020

22

https://gitlab.inria.fr/gem5-nop/gem5

NOP-Oriented Programming: Should we Care?

Future Works

« More realistic use-cases
« Proof of concept
. Extends to real applications (embedded OS?)

» Fault model in gem5 has to be enhanced (on-going internship)
« More realistic fault model (replay more than one inst.)

o Propose countermeasures
. Hardware (could depend on how the injection is made)
. Software (HW independent)

11 - September 2020

23

Thank You!

NOP-Oriented Programming: Should we Care?
Pierre-Yves Péneau, Ludovic Claudepierre, Damien Hardy, Erven Rohou

&,2’ - % 0 UNIVERSITE DEﬁ (.) IRISA

CentraleSupélec

