
Une

rapide

visite

d’Inria

NOP-Oriented Programming:
Should we Care?

Pierre-Yves Péneau, Ludovic Claudepierre, Damien Hardy, Erven Rohou

SILM workshop - Friday, September 11th 2020

Univ Rennes, Inria, CNRS, IRISA

-

Introduction

NOP-Oriented Programming: Should we Care?

 Fault injection nowadays
 ElectroMagnetic Pulse (EMP)

 Laser injection

 Clock glitch

 …

September 202011 2

-

Introduction

NOP-Oriented Programming: Should we Care?

 Fault injection nowadays
 ElectroMagnetic Pulse (EMP)

 Laser injection

 Clock glitch

 …

 Efficient but limited to 1 or few injections

September 202011 2

-

Introduction

NOP-Oriented Programming: Should we Care?

 Fault injection nowadays
 ElectroMagnetic Pulse (EMP)

 Laser injection

 Clock glitch

 …

 Efficient but limited to 1 or few injections

 Lack of precision
 EMP/laser: unavoidable delay between 2 injections

September 202011 2

-

Approach and questions

NOP-Oriented Programming: Should we Care?

 What if an attacker can overcome these limitations?
 No delay between injection

 High precision (instruction-level)

 Unlimited number of faults

 Questions:
1. What are the possibilities for an attacker?

2. Can we simulate this?

September 202011 3

-

Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

September 202011

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

4

-

Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

 Our model: instruction-skip by a factor of hundreds/thousands
 Program mainly driven by NOP

 Select which instruction you want to execute

September 202011

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

4

-

Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

 Our model: instruction-skip by a factor of hundreds/thousands
 Program mainly driven by NOP

 Select which instruction you want to execute

 That’s what we call NOP-Oriented Programming

September 202011

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

4

-
Une

rapide

visite

d’Inria

Possibilities with a NOP-Oriented

programming model

Theoretical
analysis

September 202011

-

Assumptions

NOP-Oriented Programming: Should we Care?

 The binary contains a minimal set of instructions:
 load/store

 move

 add

 sub

 The binary is bug-free

 No backdoor is necessary

 ARM instruction set
 Could be applied to other ISA

September 202011 6

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

September 202011

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

 With branches, almost any address could be reached
 Starting from @A, how to reach @B?

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

 With branches, almost any address could be reached
 Starting from @A, how to reach @B?

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

@B : inst. n+1

…

@A : inst. 1

…

…

@A’-1 : inst. n-1

@A’ : branch B

7

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

 With branches, almost any address could be reached
 Starting from @A, how to reach @B?

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

@B : inst. n+1

…

@A : inst. 1

…

…

@A’-1 : inst. n-1

@A’ : branch B

7

-

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

3. Use a move instruction from Rs into Rd

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

3. Use a move instruction from Rs into Rd

4. Exit the loop (attack 1)

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

3. Use a move instruction from Rs into Rd

4. Exit the loop (attack 1)

 This can be extended to a set of registers (see paper)
September 202011 9

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr rX, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

 To write in memory, reach a store that uses Rm and Rs

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

 To write in memory, reach a store that uses Rm and Rs
 If no such instruction, use other registers with move (attack 3)

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

 To write in memory, reach a store that uses Rm and Rs
 If no such instruction, use other registers with move (attack 3)

 This can be extended to a set of registers (see paper)

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

September 202011 11

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

September 202011 11

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

 Find an unconditional branch to Rd:

blx Rd

September 202011 11

-

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

 Find an unconditional branch to Rd:

blx Rd

 Execute

September 202011

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

11

-

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

 Find an unconditional branch to Rd:

blx Rd

 Execute

 Use the stack:

push Rd

pop pc

September 202011

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

11

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011 12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

This is Turing-Complete (proof in the paper)

September 202011

Direct dependency

12

-
Une

rapide

visite

d’Inria

NOP-Oriented programming in a nutshell

Application to
(almost) real life

September 202011

-

Disclaimer

NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES

2) How to write user-defined data in memory

 However, this is not specific to AES

September 202011

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).

14

-

Disclaimer

NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES

2) How to write user-defined data in memory

 However, this is not specific to AES

 We only need a minimum set of instructions

 Our target: ARM embedded systems
 No memory protection

September 202011

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).

14

-

Disclaimer

NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES

2) How to write user-defined data in memory

 However, this is not specific to AES

 We only need a minimum set of instructions

 Our target: ARM embedded systems
 No memory protection

 Realised in the gem5* simulator
 Replay fault model has been implemented

 Few attacks tested on real board

September 202011

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).

14

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

September 202011 15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

ldr r0, [pc, #-32]

add r0, r0, r1

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

ldr r0, [pc, #-32]

add r0, r0, r1

ldr r0, [pc, #-32]

ldr r0, [pc, #-32]

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

ldr r0, [pc, #-32]

add r0, r0, r1

ldr r0, [pc, #-32]

ldr r0, [pc, #-32]

Possible side-effect

on r0

15

-

Base program

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

sprintf(plain, "%s", "thisisaplaintext");

sprintf(key, "%s", "0123456789ABCDEF");

Init phase

16

-

Base program

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

sprintf(plain, "%s", "thisisaplaintext");

sprintf(key, "%s", "0123456789ABCDEF");

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init phase

Compute phase

16

-

Base program

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

sprintf(plain, "%s", "thisisaplaintext");

sprintf(key, "%s", "0123456789ABCDEF");

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

 Goal: retrieve the key

Init phase

Compute phase

16

-

Attack #1 : get the encryption key (1/2)

NOP-Oriented Programming: Should we Care?

September 202011

 AESEncrypt(cipher, plain, key);
 key is in r2 (function call convention)

17

-

Attack #1 : get the encryption key (1/2)

NOP-Oriented Programming: Should we Care?

September 202011

 AESEncrypt(cipher, plain, key);
 key is in r2 (function call convention)

 printf("%s\n", cipher);
 String to print is in r1 (function call convention)

17

-

Attack #1 : get the encryption key (1/2)

NOP-Oriented Programming: Should we Care?

September 202011

 AESEncrypt(cipher, plain, key);
 key is in r2 (function call convention)

 printf("%s\n", cipher);
 String to print is in r1 (function call convention)

 Idea: move r2 into r1, then call printf()

17

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

 Two bursts of nops are

necessary
key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

 Two bursts of nops are

necessary

 More generic attacks to

retrieve the key are

presented in the paper

key is in r2

Store at $fp-248

Load into r1

18

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

1) Re-create the address of cipher in register Rm

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

1) Re-create the address of cipher in register Rm

2) Set the decimal value for a character in register Rs

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

1) Re-create the address of cipher in register Rm

2) Set the decimal value for a character in register Rs

3) Find a store instruction that use Rm and Rs

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

1. Call AESEncrypt()

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

1. Call AESEncrypt()

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

3. Exit the loop

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

…

str r1, [r0]

1. Call AESEncrypt()

2. Do as many iteration as

necessary

3. Exit the loop

4. Store the value

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

…

str r1, [r0]

1. Call AESEncrypt()

2. Do as many iteration as

necessary

3. Exit the loop

4. Store the value

5. Restart

-
Une

rapide

visite

d’Inria

Let’s try to summarize and answer our questions

Conclusion

September 202011

-

Summary

September 202011

 Q1. What are the possibilities for an attacker?
 Hijack CFG

 Control registers

 Write in memory

 The attacker executes what he wants (full control)

NOP-Oriented Programming: Should we Care?

22

-

Summary

September 202011

 Q1. What are the possibilities for an attacker?
 Hijack CFG

 Control registers

 Write in memory

 The attacker executes what he wants (full control)

 Q2. Can we simulate this fault model?
 gem5 simulator

 Setup available at https://gitlab.inria.fr/gem5-nop/gem5

 Simulator modifications + all source code and binaries

 Successfully retrieve a key with AES

 Successfully altered memory

NOP-Oriented Programming: Should we Care?

22

https://gitlab.inria.fr/gem5-nop/gem5

-

Future Works

September 202011

 More realistic use-cases
 Proof of concept

 Extends to real applications (embedded OS?)

 Fault model in gem5 has to be enhanced (on-going internship)
 More realistic fault model (replay more than one inst.)

 Propose countermeasures
 Hardware (could depend on how the injection is made)

 Software (HW independent)

NOP-Oriented Programming: Should we Care?

23

Thank You!
NOP-Oriented Programming: Should we Care?

Pierre-Yves Péneau, Ludovic Claudepierre, Damien Hardy, Erven Rohou

