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Introduction

NOP-Oriented Programming: Should we Care?

 Fault injection nowadays
 ElectroMagnetic Pulse (EMP)

 Laser injection

 Clock glitch

 …

 Efficient but limited to 1 or few injections

 Lack of precision
 EMP/laser: unavoidable delay between 2 injections
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Approach and questions

NOP-Oriented Programming: Should we Care?

 What if an attacker can overcome these limitations?
 No delay between injection

 High precision (instruction-level)

 Unlimited number of faults

 Questions:
1. What are the possibilities for an attacker?

2. Can we simulate this?
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Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

September 202011

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.
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Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

 Our model: instruction-skip by a factor of hundreds/thousands
 Program mainly driven by NOP

 Select which instruction you want to execute

 That’s what we call NOP-Oriented Programming
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*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.
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Assumptions

NOP-Oriented Programming: Should we Care?

 The binary contains a minimal set of instructions:
 load/store

 move

 add

 sub

 The binary is bug-free

 No backdoor is necessary

 ARM instruction set
 Could be applied to other ISA
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Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached
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Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags
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…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load
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…
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NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

3. Use a move instruction from Rs into Rd

4. Exit the loop (attack 1)

 This can be extended to a set of registers (see paper)
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Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store
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NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch
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mov r0, #0
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Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

 Find an unconditional branch to Rd:

blx Rd

 Execute

 Use the stack:

push Rd

pop pc

September 202011

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

11



-
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5) Jump to any address
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Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

This is Turing-Complete (proof in the paper)
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Disclaimer

NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES 

2) How to write user-defined data in memory

 However, this is not specific to AES
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NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES 

2) How to write user-defined data in memory

 However, this is not specific to AES

 We only need a minimum set of instructions

 Our target: ARM embedded systems
 No memory protection

 Realised in the gem5* simulator
 Replay fault model has been implemented

 Few attacks tested on real board

September 202011
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Base program

NOP-Oriented Programming: Should we Care?
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memset(cipher, 0, BUF_SIZE);

sprintf(plain, "%s", "thisisaplaintext");

sprintf(key, "%s", "0123456789ABCDEF");

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

 Goal: retrieve the key

Init phase

Compute phase
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NOP-Oriented Programming: Should we Care?
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 AESEncrypt(cipher, plain, key);
 key is in r2 (function call convention)

 printf("%s\n", cipher);
 String to print is in r1 (function call convention)

 Idea: move r2 into r1, then call printf()
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NOP-Oriented Programming: Should we Care?
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 More generic attacks to 
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presented in the paper
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 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)
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 Illustration with “Hello World!”
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…

mov r0, #0 // the memory address
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…
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…
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 Q1. What are the possibilities for an attacker?
 Hijack CFG

 Control registers

 Write in memory

 The attacker executes what he wants (full control)
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 Q1. What are the possibilities for an attacker?
 Hijack CFG

 Control registers

 Write in memory

 The attacker executes what he wants (full control)

 Q2. Can we simulate this fault model?
 gem5 simulator

 Setup available at https://gitlab.inria.fr/gem5-nop/gem5

 Simulator modifications + all source code and binaries

 Successfully retrieve a key with AES

 Successfully altered memory
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Future Works
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 More realistic use-cases
 Proof of concept

 Extends to real applications (embedded OS?)

 Fault model in gem5 has to be enhanced (on-going internship)
 More realistic fault model (replay more than one inst.)

 Propose countermeasures
 Hardware (could depend on how the injection is made)

 Software (HW independent)
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