
Une

rapide

visite

d’Inria

NOP-Oriented Programming:
Should we Care?

Pierre-Yves Péneau, Ludovic Claudepierre, Damien Hardy, Erven Rohou

SILM workshop - Friday, September 11th 2020

Univ Rennes, Inria, CNRS, IRISA

-

Introduction

NOP-Oriented Programming: Should we Care?

 Fault injection nowadays
 ElectroMagnetic Pulse (EMP)

 Laser injection

 Clock glitch

 …

September 202011 2

-

Introduction

NOP-Oriented Programming: Should we Care?

 Fault injection nowadays
 ElectroMagnetic Pulse (EMP)

 Laser injection

 Clock glitch

 …

 Efficient but limited to 1 or few injections

September 202011 2

-

Introduction

NOP-Oriented Programming: Should we Care?

 Fault injection nowadays
 ElectroMagnetic Pulse (EMP)

 Laser injection

 Clock glitch

 …

 Efficient but limited to 1 or few injections

 Lack of precision
 EMP/laser: unavoidable delay between 2 injections

September 202011 2

-

Approach and questions

NOP-Oriented Programming: Should we Care?

 What if an attacker can overcome these limitations?
 No delay between injection

 High precision (instruction-level)

 Unlimited number of faults

 Questions:
1. What are the possibilities for an attacker?

2. Can we simulate this?

September 202011 3

-

Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

September 202011

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

4

-

Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

 Our model: instruction-skip by a factor of hundreds/thousands
 Program mainly driven by NOP

 Select which instruction you want to execute

September 202011

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

4

-

Fault model : NOP-Oriented programming

NOP-Oriented Programming: Should we Care?

 Base fault model: instruction skip*
 An attacker is able to entirely skips a specific instruction

 Skipping an instruction replaces this instruction by a NOP

 Our model: instruction-skip by a factor of hundreds/thousands
 Program mainly driven by NOP

 Select which instruction you want to execute

 That’s what we call NOP-Oriented Programming

September 202011

*Chong Hee and Quisquater. "Fault attacks for CRT based RSA: New attacks, new results, and new countermeasures."International Workshop on Information Security Theory and Practices, 2007.

4

-
Une

rapide

visite

d’Inria

Possibilities with a NOP-Oriented

programming model

Theoretical
analysis

September 202011

-

Assumptions

NOP-Oriented Programming: Should we Care?

 The binary contains a minimal set of instructions:
 load/store

 move

 add

 sub

 The binary is bug-free

 No backdoor is necessary

 ARM instruction set
 Could be applied to other ISA

September 202011 6

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

September 202011

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

 With branches, almost any address could be reached
 Starting from @A, how to reach @B?

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

 With branches, almost any address could be reached
 Starting from @A, how to reach @B?

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

@B : inst. n+1

…

@A : inst. 1

…

…

@A’-1 : inst. n-1

@A’ : branch B

7

-

Control Flow Hijacking (attack 1)

NOP-Oriented Programming: Should we Care?

 Any instruction can be skipped to reach any address

 From an address A, any address A’

where A’ > A can be reached

 With branches, almost any address could be reached
 Starting from @A, how to reach @B?

September 202011

@A : inst. 1

@A+2 : inst. 2

…

…

@A’-1 : inst. n-1

@A’ : inst. n

@B : inst. n+1

…

@A : inst. 1

…

…

@A’-1 : inst. n-1

@A’ : branch B

7

-

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r4, #10

label:

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Control loop iteration (attack 2)

NOP-Oriented Programming: Should we Care?

 Do fewer iterations by:
 Replace entire body by NOP

 NOP the conditional branch at the end and exit

 Do more iterations by:
 NOP the instruction which controls the loop condition

Typically a subtraction on a counter

 NOP the compare instruction
This relies on the current state of the control flags

September 202011 8

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

3. Use a move instruction from Rs into Rd

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

3. Use a move instruction from Rs into Rd

4. Exit the loop (attack 1)

September 202011 9

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

mov r3, r0

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

Write any possible value in a register (attack 3)

NOP-Oriented Programming: Should we Care?

 This relies on the presence of
 Instruction(s) to increment a register

 move or load

1. Use a controlled loop (attack 2)
• We control the number of iterations

2. Use a register Rs whose content is controlled

3. Use a move instruction from Rs into Rd

4. Exit the loop (attack 1)

 This can be extended to a set of registers (see paper)
September 202011 9

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr rX, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

 To write in memory, reach a store that uses Rm and Rs

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

 To write in memory, reach a store that uses Rm and Rs
 If no such instruction, use other registers with move (attack 3)

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

Load & store from a register (attack 4)

NOP-Oriented Programming: Should we Care?

 Rm represents a memory address

 Rs represents a value to store

 Both registers content are controlled (attack 3)

 To read in memory, reach a load that uses Rm
 No need of Rs for reading

 To write in memory, reach a store that uses Rm and Rs
 If no such instruction, use other registers with move (attack 3)

 This can be extended to a set of registers (see paper)

September 202011

…

mov r0, #0

mov r1, #0

mov r4, #10

label:

…

add r0, r0, #1

add r1, r1, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

ldr r1, [r0]

…

…

str r1, [r0]

10

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

September 202011 11

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

September 202011 11

-

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

 Find an unconditional branch to Rd:

blx Rd

September 202011 11

-

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

 Find an unconditional branch to Rd:

blx Rd

 Execute

September 202011

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

11

-

Jump to any address (attack 5)

NOP-Oriented Programming: Should we Care?

 Rd represents the destination of a branch

 Rd is a controlled register

 Find an unconditional branch to Rd:

blx Rd

 Execute

 Use the stack:

push Rd

pop pc

September 202011

…

mov r0, #0

mov r4, #10

label:

…

add r0, r0, #1

…

sub r4, r4, #1

cmp r4, 0

bne label

endloop:

…

…

…

blx r0

11

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011 12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

September 202011

Direct dependency

12

-

Summary of possibilities

NOP-Oriented Programming: Should we Care?

1) CFG Hijacking

2) Control loop iteration

3) Control register(s) content

4) Load/Store from register(s)

5) Jump to any address

This is Turing-Complete (proof in the paper)

September 202011

Direct dependency

12

-
Une

rapide

visite

d’Inria

NOP-Oriented programming in a nutshell

Application to
(almost) real life

September 202011

-

Disclaimer

NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES

2) How to write user-defined data in memory

 However, this is not specific to AES

September 202011

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).

14

-

Disclaimer

NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES

2) How to write user-defined data in memory

 However, this is not specific to AES

 We only need a minimum set of instructions

 Our target: ARM embedded systems
 No memory protection

September 202011

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).

14

-

Disclaimer

NOP-Oriented Programming: Should we Care?

 We present two attacks:
1) How to retrieve the encryption key used in AES

2) How to write user-defined data in memory

 However, this is not specific to AES

 We only need a minimum set of instructions

 Our target: ARM embedded systems
 No memory protection

 Realised in the gem5* simulator
 Replay fault model has been implemented

 Few attacks tested on real board

September 202011

*Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2 (2011).

14

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

September 202011 15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

ldr r0, [pc, #-32]

add r0, r0, r1

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

ldr r0, [pc, #-32]

add r0, r0, r1

ldr r0, [pc, #-32]

ldr r0, [pc, #-32]

15

-

Adaptation of the fault model

NOP-Oriented Programming: Should we Care?

 Theory: skipping an instruction has no side-effect
 NOP-Oriented Programming

 Experienced fault model*: skipping an instruction repeats the N

previous ones
 N is the size of the instruction buffer

 N = 1 in our experiments

 Limits the attacker
 cannot repeat a PC-relative load for example

September 202011

*Riviere, Lionel, et al. "High precision fault injections on the instruction cache of ARMv7-M architectures." International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2015.

ldr r0, [pc, #-32]

add r0, r0, r1

ldr r0, [pc, #-32]

ldr r0, [pc, #-32]

Possible side-effect

on r0

15

-

Base program

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

sprintf(plain, "%s", "thisisaplaintext");

sprintf(key, "%s", "0123456789ABCDEF");

Init phase

16

-

Base program

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

sprintf(plain, "%s", "thisisaplaintext");

sprintf(key, "%s", "0123456789ABCDEF");

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init phase

Compute phase

16

-

Base program

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

sprintf(plain, "%s", "thisisaplaintext");

sprintf(key, "%s", "0123456789ABCDEF");

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

 Goal: retrieve the key

Init phase

Compute phase

16

-

Attack #1 : get the encryption key (1/2)

NOP-Oriented Programming: Should we Care?

September 202011

 AESEncrypt(cipher, plain, key);
 key is in r2 (function call convention)

17

-

Attack #1 : get the encryption key (1/2)

NOP-Oriented Programming: Should we Care?

September 202011

 AESEncrypt(cipher, plain, key);
 key is in r2 (function call convention)

 printf("%s\n", cipher);
 String to print is in r1 (function call convention)

17

-

Attack #1 : get the encryption key (1/2)

NOP-Oriented Programming: Should we Care?

September 202011

 AESEncrypt(cipher, plain, key);
 key is in r2 (function call convention)

 printf("%s\n", cipher);
 String to print is in r1 (function call convention)

 Idea: move r2 into r1, then call printf()

17

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

 Two bursts of nops are

necessary
key is in r2

Store at $fp-248

Load into r1

18

-

NOP-Oriented Programming: Should we Care?

September 202011

Attack #1 : get the encryption key (2/2)

1) Move r2 into r1

2) Call printf()

 Two bursts of nops are

necessary

 More generic attacks to

retrieve the key are

presented in the paper

key is in r2

Store at $fp-248

Load into r1

18

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

1) Re-create the address of cipher in register Rm

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

1) Re-create the address of cipher in register Rm

2) Set the decimal value for a character in register Rs

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Idea: hijack cipher buffer to write custom data

 ASCII characters in this example

 How? Take control of a loop to:

1) Re-create the address of cipher in register Rm

2) Set the decimal value for a character in register Rs

3) Find a store instruction that use Rm and Rs

Attack #2: Write custom data in memory (in theory)

NOP-Oriented Programming: Should we Care?

September 202011

memset(cipher, 0, BUF_SIZE);

AESEncrypt(cipher, plain, key);

printf("%s\n", cipher);

Init

Attack

Display

19

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

1. Call AESEncrypt()

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

1. Call AESEncrypt()

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

1. Call AESEncrypt()

2. Do as many iteration as

necessary

3. Exit the loop

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

…

str r1, [r0]

1. Call AESEncrypt()

2. Do as many iteration as

necessary

3. Exit the loop

4. Store the value

-

 Illustration with “Hello World!”

Attack #2: Write custom data in memory (in practice)

NOP-Oriented Programming: Should we Care?

September 202011 20

<AESEncrypt>:

…

mov r0, #0 // the memory address

mov r1, #0 // the ASCII value

…

loop:

…

add r0, r0, #1 // Executed N times, with N = @cipher

add r1, r1, #1 // Executed 72 times (‘H’ character)

… // then always skipped

cmp

bne loop

endloop:

…

str r1, [r0]

1. Call AESEncrypt()

2. Do as many iteration as

necessary

3. Exit the loop

4. Store the value

5. Restart

-
Une

rapide

visite

d’Inria

Let’s try to summarize and answer our questions

Conclusion

September 202011

-

Summary

September 202011

 Q1. What are the possibilities for an attacker?
 Hijack CFG

 Control registers

 Write in memory

 The attacker executes what he wants (full control)

NOP-Oriented Programming: Should we Care?

22

-

Summary

September 202011

 Q1. What are the possibilities for an attacker?
 Hijack CFG

 Control registers

 Write in memory

 The attacker executes what he wants (full control)

 Q2. Can we simulate this fault model?
 gem5 simulator

 Setup available at https://gitlab.inria.fr/gem5-nop/gem5

 Simulator modifications + all source code and binaries

 Successfully retrieve a key with AES

 Successfully altered memory

NOP-Oriented Programming: Should we Care?

22

https://gitlab.inria.fr/gem5-nop/gem5

-

Future Works

September 202011

 More realistic use-cases
 Proof of concept

 Extends to real applications (embedded OS?)

 Fault model in gem5 has to be enhanced (on-going internship)
 More realistic fault model (replay more than one inst.)

 Propose countermeasures
 Hardware (could depend on how the injection is made)

 Software (HW independent)

NOP-Oriented Programming: Should we Care?

23

Thank You!
NOP-Oriented Programming: Should we Care?

Pierre-Yves Péneau, Ludovic Claudepierre, Damien Hardy, Erven Rohou

